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Two-component plasma in a gravitational field:
thermodynamics
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Laboratoire de Physique‡, Ecole Normale Suṕerieure de Lyon, 46 Alĺee d’Italie, 69364 Lyon
cedex 07, France

Received 13 March 1998

Abstract. We revisit the model of the two-component plasma in a gravitational field, which
mimics charged colloidal suspensions. We concentrate on the computation of the grand potential
of the system. Also, a special sum rule for this model is presented.

1. Introduction

In a recent paper [1], the author presented a particular solvable model of a Coulomb system
inspired from the problem of the sedimentation equilibrium of charged colloidal suspensions.
Although the model is much simpler than real colloidal suspensions, it features several
properties observed in numerical results for more realistic models [2] and shows some new
interesting results.

This paper is a complement to [1] in which only the density profiles were computed.
Here we concentrate on thermodynamic quantities such as the grand potential. In section 2
we briefly describe the model, in section 3 we compute the grand potential of the system,
and in the last section we present a special sum rule for this model.

2. The model

We consider a two-dimensional, two-component plasma composed of two species of
particles with charges±q and massesM±. We choose a system of Cartesian coordinates
(Oxy) in which the gravitational field isg = −gŷ. The particles are in a container
of height h and infinite width. Let us define the inverse gravitational lengths of the
particlesk± = βM±g, k0 = (k+ + k−)/2, and δk = k+ − k−, whereβ is the inverse
temperature. In the grand canonical ensemble we define position-dependent rescaled
fugacitiesm±(r) = m0 exp(−k±y) to account for the interaction of the particles with the
external gravitational field. The screening length (at zero altitude) is given by 1/m0 [1, 3].

The two-component plasma is equivalent to a free Dirac field [3–5] whenβq2 = 2. The
grand partition function can be written as4 = det(1+K), where

K =
[
m+(r)

1+ σz
2
+m−(r)1− σz

2

]
/∂−1 (1)
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with σx , σy , σz the Pauli matrices and /∂ = σx∂x + σy∂y . To compute4, one must solve the
eigenvalue problem

K9 = λ9 (2)

where9 = (ψ, χ) and λ are the eigenvectors and eigenvalues ofK. Then the grand
potential is given by

� = −kBT
∑
λ

ln(1+ λ). (3)

When an external field is acting differently over the positive and negative particles, as
in the present case, it is useful to write the fugacities asm±(r) = m(r) exp[−(±)2V (r)],
wherem(r) = m0 exp[−k0y] andV (r) = δky/4. Let us define the auxiliary eigenfunctions

φ+(r) = eV (r)ψ(r) (4)

φ−(r) = e−V (r)χ(r) (5)

and the operators

a = ∂x + i∂y + ∂xV (r)+ i∂yV (r) (6)

and

a† = −∂x + i∂y + ∂xV (r)− i∂yV (r). (7)

Then the eigenvalue problem (2) is equivalent to

φ+(r)+ λ2a†m(r)−1a[m(r)−1φ+(r)] = 0 (8)

φ−(r) = λa[m(r)−1φ+(r)] (9)

and the boundary conditions are thatψ (χ ) on the boundary is equal to a function which is
analytic (anti-analytic) outside the container and vanishes at infinity [6, 7]. This method is
general and can be applied to other models of a two-component plasma in an external field.

3. The grand potential

In the present case, we look for solutions of (8) of the formφ+(r) = h(y) exp(ikx − k0y).
From (8) we find the equation forh(y)

[(k + δk/4)k0− (k + δk/4)2− λ−2m2
0 e−2k0y ]h(y)+ k0h

′(y)+ h′′(y) = 0 (10)

which is very similar to equation (3.2) of [1] satisfied by the Green functionĝ++. The
solution is

h(y) =
[
AIν

(
m0 e−k0y

λk0

)
+ BKν

(
m0 e−k0y

λk0

)]
e−k0y/2 (11)

with ν = |k − (k−/2)|/k0, andA andB constants of integration.
In the present case, the boundary conditions becomeφ+(x, y = 0) = 0 andφ−(x, y =

h) = 0 if k > 0, andφ+(x, y = h) = 0 andφ−(x, y = 0) = 0 if k < 0. These conditions
give a system of two linear homogeneous equations for the constantsA andB. Imposing
that the discriminant of this system must be zero, in order to have non-trivial solutions,
gives the equation that determinesλ. Let σ be the sign ofk − (k−/2). If k > 0, λ is a
solution of

Iν

(
m0

λk0

)
Kν+σ

(
m0 e−k0h

λk0

)
+ Iν+σ

(
m0 e−k0h

λk0

)
Kν

(
m0

λk0

)
= 0 (12)
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and if k < 0, λ is given by

Iν

(
m0 e−k0h

λk0

)
Kν−1

(
m0

λk0

)
+ Iν−1

(
m0

λk0

)
Kν

(
m0 e−k0h

λk0

)
= 0. (13)

These equations have an infinite number of solutions. For eachk, we may index the
different values ofλ by an integer̀ : λ = λk,`. Then, the grand potential per unit length in
the x-direction is

ω = −kBT

2π

∫ ∑
`

ln(1+ λk,`) dk. (14)

The sum over̀ can be performed explicitly [6–8], for example in the case wherek < 0,
by noting that the zeros of the entire function

f (z) = m0

k0
e−k0hνz[Iν(m0 e−k0hz/k0)Kν−1(m0z/k0)+ Iν−1(m0z/k0)Kν(m0 e−k0hz/k0)]

(15)

are 1/λk,` and thatf (0) = 1, sof (z) =∏`(1− λk,`z). Then,∑
`

ln(1+ λk,`) = ln
∏
`

(1+ λk,`) = ln f (−1). (16)

The same can be done in the casek > 0. Then, the grand potential can be expressed as
three integrals fork in the domains ]−∞, 0], [0, k−/2], and [k−/2,+∞[. After a change
of variable in the integrals, the grand potential can be written in a more compact way as

βω = − k0

2π

(∫ +∞
−k−/2k0

+
∫ +∞
−k+/2k0

)
ln

[
e−k0h(ν+1) m0

k0

{
Iν

(
m0

k0

)
Kν+1

(
m0

k0
e−k0h

)
+Iν+1

(
m0

k0
e−k0h

)
Kν

(
m0

k0

)}]
dν. (17)

From now on we consider the simpler case when the container has infinite width (h→
∞). Equation (17) becomes

βω = − k0

2π

(∫ +∞
−k−/2k0

+
∫ +∞
−k+/2k0

)
ln

[(
2k0

m0

)ν
0(ν + 1)Iν

(
m0

k0

)]
dν. (18)

The two-component plasma atβq2 = 2 has logarithmic divergences due to the collapse
of pairs of particles of opposite sign. This can be avoided by introducing hard core particles
of radiusR. The integrals in (17) and (18) are divergent and must be cut off, the upper
limit of integration becomesνmax= (k0R)

−1.
We can have an asymptotic expression for the grand potential in the usual physical case

wherek0 � m0, using the Debye expansion [9] of the Bessel functions. The calculations
are very similar to those of [6] for a different problem. One finds

ω = − 1

2k0
p0+ o

(
m0

k0

)
(19)

where p0 is the pressure of a two-component plasma without an external field. It is
interesting to note that this is the same grand potential of a system without gravity, but
confined in a container of height(2k0)

−1. Furthermore, from [1], we know that most of
the particles are in fact in the region 0< y < (2k0)

−1 since for intermediate altitudes (the
neutral zone) the density profiles decay as exp(−2k0y).
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4. A special sum rule

We can write a sum rule for this system by computing the force exerted on the bottom of
the container in two different ways. This force is the weight of the column of fluid over
the base of the container. On the other hand, it is also given by the pressure at zero altitude
which can be computed by means of the contact theorem: it is the density at zero altitude
timeskBT . This gives the sum rule

ρ+(0)+ ρ−(0) = βg
(
M+

∫ +∞
0

ρ+(y) dy +M−
∫ +∞

0
ρ−(y) dy

)
(20)

whereρ± are the individual densities of the positive and negative particles, respectively.
This sum rule can be written in a simpler way; because the system is neutral, both integrals
in (20) are equal ton/2, wheren is the total number of particles. Then, the sum rule
becomes

ρ+(0)+ ρ−(0) = k0n. (21)

We expect this to be true at any temperature. We can test the sum rule in the present case
whenβq2 = 2. The total number of particles can be computed from the grand potential:

n = −βm0
∂ω

∂m0
. (22)

From equation (18) one finds

n = m0

2π

(∫ +∞
−k−/2k0

+
∫ +∞
−k+/2k0

)
Iν+1(m0/k0)

Iν(m0/k0)
dν. (23)

On the other hand, from equation (3.10) of [1] we can compute the densities at zero altitude:

ρ±(0) = m0k0

2π

∫ +∞
−k±/2k0

Iν+1(m0/k0)

Iν(m0/k0)
dν. (24)

The sum rule (21) is verified.
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